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Overview

In your Dynamic Systems & Control course, you are going to need to solve elementary differential
equations like a pro. You will need to solve the equations and interpret the solutions with very
little effort. I know that all of you have taken a differential equations course in which all the
necessary background has been covered. However, it has been my experience that students
entering MEE 322 are a bit rusty.

The purpose of these notes is to refresh your memory. I have intentionally left out a bunch
of the theory that would normally accompany a thorough discussion of differential equations.
You can refer back to your differential equations text for that. Here, I try to cover just the
most important aspects that you will need to be fluent with if you are going to succeed in your
Dynamic Systems & Control course.

These notes have gone through several revisions. They have gotten better primarily through
student feedback. I hope that you send me an email (bcoller@niu.edu) if you run across any
mistakes. Also, if something is not clear, you can help me clarify the discussion. I would be
grateful for any constructive criticism that you can provide.



Chapter 1

What Does it Mean to Solve a
Differential Equation?

Differential equations come in many different flavors. If you skim through the chapter titles
of this handbook, you’ll see descriptors such as homogeneous, nonhomogeneous, first order,
second order, constant coefficient, linear, and nonlinear to characterize different types. In this
handbook, we’re going to discuss several different techniques to “solve” many different flavors
of differential equations. When learning (or relearning) these different solution techniques, it’s
easy to lose track of what it means to have a solution. Therefore, we begin this handbook with
such a discussion.

1.1 An Example

Suppose we have a differential equation of the form

%y(t) —2y(t) =0, or %y(t) = 2y(t). (1.1)

In words, this equation simply states that the derivative of the function y(¢) with respect to ¢ is
equal to the function itself, multiplied by two. In this set of notes we will usually think of the
independent variable ¢ as time. So we might think of y(t) as a position or length that changes
with respect to time, and the derivative dy/dt as a speed.

A solution to the differential equation is simply a function y(¢) that satisfies the equality
in (1.1). Suppose, for example, we take the function y(¢f) = sin(¢). Then, the derivative is
dy/dt = cos(t). Substituting these into (1.1), we get

cos(t) L9 sin(t).

Surely, these two terms are equal to each other for some values of t. However, for y(t) = sin(t) to
be a solution to the differential equation, the equality must be true for all values of t. Therefore,
y(t) = sin(¢) is NOT a solution to (1.1).

Now let’s try a different function: y(t) = e?*. Notice that the derivative is dy/dt = 2e?'.
Substituting these into (1.1), we find

?

2¢% = 2(e?h).

Ahal! The equality above is satisfied for all values of t. Therefore, y(t) = € is a solution.



1.2 An Example with Multiple (independent) Solutions

Let’s look an another example:

a2 d2
ey +2y() =0, or  —5yt) = -2y(1). (1.2)

To solve this differential equation is to find a function y(¢) whose second derivative is equal to
the function itself, multiplied by -2.
What if we try y(t) = e again? Notice that d?y/dt = 4 e*. Substituting this into (1.2), we
obtain
42 L —2(e).

Thus, it does not satisfy the differential equation.

If we try y(t) = e‘/it, the substitution yields

2ev2t L —2(6‘/§t).

Because of the unbalanced minus sign above, this doesn’t work either.

However, notice what happens if we try y(¢) = sin (\/5 t). The second derivative is d?y/dt? =
—2 sin(v/2t). Subtitution into (1.2) gives

—2 sin(V2t) = —2 <sin(\/§t)) .

Ooooooh! Here’s the solution.

Hummmm. In the sentence above, I should not have said that sin(ﬂ t) is the solution.
It gives the impression that it is the only solution. You can check for yourself that y(t) =
cos(v/2t) is also a solution. Therefore, the differential equation (1.2) has two completely different
(independent) solutions.

1.3 Take-Aways

Below is a list of what I feel to be the most important points that I want you to “take away”
from Chapter 1.

1. If y(¢) is a solution to a differential equation, you should be able to substitute it into
the differential equation and the equality should hold for all values of the independent
variable. (In our examples, the independent variable was t.)

2. A differential equation may have multiple, independent solutions.



Chapter 2

First Order, Constant Coefficient,
Linear, Homogeneous Differential
Equations

One way to find a solution to a differential equation is to simply keep trying different functions
until you find one that works. Depending on how good a guesser you are, this could take a long
time. Fortunately, for certain types of differential equations, there is a systematic approach for
finding a solution... all the solutions.

2.1 Finding a Solution

We'll start off by revisiting the first differential equation we encountered in the previous chapter:

46 = 24 =o0. (2.1)

dt”
As we’ll discuss later, differential equations similar to (2.1) tend to have solutions that are
exponential functions. Therefore, we’ll try a solution of the form

y(t) = e, (2:2)

where s is some constant that we have to determine. In your previous differential equations
course, you may have called this constant r or A. In Dynamic Systems & Control, though, we
always call it s.

So let’s try it out. The derivative of (2.2) is dy/dt = se®. Substituting this and (2.2) into
(2.1), we get

2
SGSt o 268t -

Factoring out the exponential on the left side, we get

°

(s —2)e* = 0.

Regardless of what s and t are, the term e®! is always a positive number. (Please check this for
yourself.) Therefore, the only way that the equality can be satisfied is if

s—2=0. (2.3)



Equation (2.3) is so important that it has a name: the characteristic equation. It is the equation
that allows us to determine the constant s. In this simple example, the characteristic equation
tells us that s must be 2. Upon substituting s = 2 into (2.2), a solution to the differential
equation (2.1) is given by

y(t) = e*. (2.4)

Of course, this is the same solution we found in Section 1.1.

2.1.1 Another Simple Example
Now let’s try another simple example:

d
—y(t) +y(t) =0. (2.5)
dt
Upon substitution of y(t) = e*! into the new differential equation, we get the following charac-
teristic equation:

s+1=0. (2.6)

Did you get this for the characteristic equation? Do you understand exactly how the get the
characteristic equation? If not, go back and re-read the appropriate parts in the previous section.
It is clear that s = —1 solves the characteristic equation and hence a solution to the differ-

ential equation (2.5) is
y(t) = e " (2.7)

Couldn’t be simpler, eh?

2.2 Some Nomenclature

? “constant

The title of this chapter describes these differential equations as being “first order,
coefficient,” “linear,” and “homogeneous.” Wow, that’s a mouth full.

We say that Equations (2.1, 2.5) are first order because the highest order derivatives are
first derivatives with respect to time.

We use the term constant coefficient because the coefficients in front of the y(t) and dy/dt
terms in (2.1, 2.5) are constant. An example of a non-constant coefficient differential is given

by

6 %y(t) + 262 y(t) = 0 (2.8)

Because the coefficient 22 varies with time, this is not a constant coefficient differential equation.

The differential equations we have seen so far are all linear because the dependent variable
y(t) and its derivative appear linearly. Notice that there are no terms that look like y?(t) or
sin(y(t)). Notice that although there is a quadratic t? term in (2.8), the differential equation
is still linear because y(t) and its derivative appear linearly. Linear equations are going to be
important for us in Dynamic Systems and Control.

Finally, we say that the differential equations discussed in this chapter are homogeneous
because all the terms in the equations have a y(t) or derivative of y(t). An example of a
differential equation which is not homogeneous is

d
—y(t) +2y(t) = .
7dty()+ y(t)



The t3 term makes it non homogeneous.

Whenever we have first order, constant coefficient, linear, homogeneous differential equa-
tions, like those we discussed in Sections 2.1 and 2.1.1, the solution will take the form y(t) = e*.
Upon substituting this form of a solution (with undetermined s) into the differential equation,
one obtains a characteristic polynomial similar to (2.3, 2.6). By finding the root of the charac-
teristic polynomial, you can determine the characteristic exponent s.

You may check for yourself that a solution of the form y(¢) = e** will not work for Equa-

tion (2.8).

2.3 What Do the Solutions Look Like?

Earlier in this chapter, we obtained two solutions to two differential equations. So far it’s
all about mathematics. In Dynamic Systems & Control, the differential equations are going
to represent physical processes. Solutions to the differential equations are going to represent
how physical quantities are changing in time. (Remember, we're interpreting our independent
variable ¢ as time.) The solution y(¢) might “grow” or “decay” or “oscillate”. It might not change
at all with time. To represent how things change in time, you will find your graphing/plotting
skills to be very valuable in Dynamic Systems & Control.

Let’s begin with the two solutions we found earlier in the chapter: y,(t) = * and y,(t) =
e~'? What do the graphs of these two functions look like?

Remember from your grade-school days that e is just a constant, a special constant. Its
value is e = 2.7182818284590451... So at time “zero,” we have y,(t = 0) = e*9 = €0 = 1.
Furthermore, y,(1) = €% = 7.3891, and y,(2) = e* = 54.5982. Table 2.1 shows more values of

ya(t) = €' as well as values of the other solution y;(t) = et

Table 2.1: Solutions y(t) evaluated at five different values of time, ¢. I am only presenting this
for illustrative purposes. Normally, I wouldn’t expect (or even want) you to generate a table
like this.

t Ya(t) = e yp(t) = et

0.0 || € =1.0000 | e =1/e’ = 1.0000
1.0 || €2 =7.3891 | e7! =1/e! =0.3679
2.0 || e* =54.598 | e7?2 =1/e% =0.1353
3.0 || €6 =403.43 | e73 =1/e® = 0.0497
4.0 || €8 =2981.0 | e=* =1/e* =0.0183

If we plot the solutions graphically, we can see the trends of the solutions more clearly. (See
Figure 2.1.) The y,(t) = €% solution quickly increases. After just four units of time (perhaps 4
seconds), the solution grows almost 3000 times larger than it began. And it continues to grow.
We say the that the solution “blows up exponentially fast”.

In contrast, the y,(t) = e~ solution “decays exponentially fast.” After just four units of
time, the solution is less than 2% of its original value. As time increases, the solutions continues
to shrink toward zero.
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Figure 2.1: Plots of the two solutions y,(t) and y,(t), including the data points from Table 2.1.

Notice that there are no oscillations in either of these solutions. We see monotonic! growth
in one case and monotonic decay in the other.

2.4 Rates of Growth and Decay

To examine growth and decay of differential equations more thoroughly, let’s consider the fol-
lowing four differential equations:
dy dy

dy
Woioy—0 2%, ,—0 2Y_
a T =Y a TY=Y dt

dy

3y =0 d
Y , anl dt

3y =0. (2.9)
As discussed in Section 2.2, the method of solving these equations is the same. By assuming a
solution of the form y(t) = €%, we get the following four characteristic equations (in order) that
must be satisfied:

s+2=0, 2s+1=0, 2s—3=0, and s—3=0.

Notice that you can generate the characteristic polynomial equation by simply “reading” it
from the differential equation with very little thought at all. The roots to the characteristic
polynomial can be calculated simply, also:

s = — and s = 3.

—_2 - =
S y S 2,

2 )
The characteristic roots, then, appear in the exponents of the solutions to the differential equa-
tions (2.9):

yt)y=e,  yt)y =€ yt) =€ y(t) =€

Each of these solutions is plotted in Figure 2.2 (blue and purple curves). Also shown in
Figure 2.2 are the solutions y,(t) and y,(t) (black dashed curves) from the previous section.

! “Monotonic” is a fancy word. A monotonically increasing function never decreases. A monotonically de-
creasing function never increases.



<— Faster Decay N Faster Growth——=>

3000

2500

2000

y@®
y@®

1500

1000

500

Figure 2.2: Solutions corresponding to a variety of different characteristic roots, s, illustrating
how the roots affect the rates of decay and growth.

Two other curves (red) corresponding to characteristic roots s = —5 and s = +6 are shown in
the figure as well.

Figure 2.2 is one that you should understand thoroughly. It depicts important solution
features which are critical to control engineering. The following are questions you should be
able to answer without hesitation. Answers are provided in Section 2.6.

1. Which (if any) of the solutions have oscillation?
2. Under what conditions (which types of characteristic roots) does the solution decay?

3. What types of characteristic roots correspond to solutions that decay more rapidly? Decay
less rapidly?

4. Under what conditions (what types of characteristic roots) does the solution blow up, i.e.
grow exponentially?

5. What types of characteristic roots correspond to solutions that grow more rapidly? Grow
less rapidly?

Not shown in Figure 2.2 is what happens when s is zero. Following the solution procedure
outlined earlier, a characteristic root of zero corresponds to a solution of the form:

y(t) = et = 1.

Therefore the solution is simply a constant. It does not change in time. It neither grows nor
decays.



2.5 A Whole Family of Solutions

Back in Section 2.1.1, you may recall that we studied the differential equation

d
—y(t t)=20 2.5
Zy(t) +y(t) = 0, (25)
and found the characteristic root to be s = —1. Therefore, we found a solution to the differential
equation as
yp(t) = e,

However, this is not the only solution. Consider, for example, the function

d
Yp,(t) = 2e7%,  whose time derivative is 7 Yo (t) = —2¢7 ",

So if we substitute y(t) = yp,(t) into (2.5), we get

%ybz (t) +uyp, (1) = —2e T+ 2e " =0.
Therefore, ys, (t) is also a solution. You may check for yourself that yp,(t) = 3e~* and y, (t) =
4 et are solutions also. In fact, y,, (t) = ce™t, for any constant c is a solution to the differential
equation (2.5). We say that there is a whole “family?” of solutions. There are an infinite number
of solutions, one for each value of ¢ in y;,(t) (even negative values of ¢, and ¢ = 0).

In Figure 2.3, we show several of these solutions, including the original solution, y(t) = e™*
(dashed). It is clear from the plot that some solutions are “bigger” than others. However, all
have the same relative decay rate.

20 -

y(t)

1.0 [

1.0 |

time

Figure 2.3: Multiple solutions to the differential equation (2.5). Our original solution y,(t) = e~

is shown dashed.

Note: In that last paragraph, when I stated that all solutions in Figure 2.3 have the same
“relative decay rate,” did you know what that means? If not, did you try to figure it out? If

2The word “family” might sound corny, but it’s the terminology that real mathematicians use.



you did know what it means, did you try to figure out why it is true? These are the types of
questions you should ask yourself as you read these notes (or any notes, textbook, etc).

To show what I mean by “same relative decay rate,” let’s consider the general solution
Up, (t) = cet, where different values of the constant ¢ produce the different curves in Figure 2.3.
Let’s evaluate this function at several times:

—t

(1) =ce™ ",

. (0) =ce ¥ =c-1.0=c,

Y. (1) = ce ™t = ¢-0.3679 = g, (0) - 0.3679,
W (2) =ce?=(ce ) e =y (1) 0.3679,
Y (3) =ce® = (ce?) e =y, (2) - 0.3679,
Uy (4) = ce ™ = (c 6_3) et =y, (3)-0.3679,

Therefore, for each unit of time, the solution y;, decreases by a factor of 0.3679. It does not
matter what the value of ¢ is. All solutions with characteristic root s = —1 lose 63.21% of their
value for each unit of time3.

2.5.1 Initial Conditions

Notice from Figure 2.3 that there is only one solution which passes through y = 3 at ¢ = 0.
Therefore, if we supplement the differential equation (2.5) with the initial condition y(0) = 3,
then we get a single, “unique”* solution: y(t) = yp,(t) = 3e~*. There is one “unique” solution
for each initial condition.

2.6 Take-Aways
The take-away messages for Chapter 2 are outlined below.

1. To find the solution to a first order, constant coefficient, linear, homogeneous differential
equation, seek a solution of the form y(t) = e*t. Upon substitution into the differential
equation, you will find the characteristic polynomial, whose root (the characteristic root)
gives the exponent s.

2. The characteristic polynomial for a first order differential equation has only one root. The
root is a real number (i.e. not imaginary or complex).

3. Solutions to first order, constant coefficient, linear, homogeneous differential equations
do not oscillate. They generally grow or decay exponentially. In one case, when the
characteristic root is zero, the solution remains constant.

4. If the characteristic root is negative, then the solution decays exponentially. The more
negative the root, the faster the decay rate.

5. If the characteristic root is positive, then the solution grows exponentially. The more
positive the root, the faster the growth rate.

%0.6321 = 1.0 - 0.3679
4Again, “unique” is a mathematical term. When we say a solution is unique, we mean that there is only one
solution.

10



6. If the function y(t) = e, for some specific value of s, is a solution to a constant coefficient
linear differential equation, then y(t) = ce*! is also a solution, for any constant c¢. Thus,
these differential equations have whole “families” of solutions. One can use the coefficient
¢ to satisfy an initial condition.

11



Chapter 3

Second Order, Constant Coefficient,
Linear, Homogeneous Differential
Equations

In this chapter, we take our discussion of differential equations and their solutions just one step
farther. In this one small step, the solutions become more rich.

3.1 An Example Problem
Let’s start this chapter with an example:

d? d

—y(t) +3—y(t) +2y(t) =0. 3.1
Syt +3 5y(0) + 2y(0) (3.1)
We say that this is a second order differential equation because the highest derivative is of order
two.

To simplify our notation, we’ll often write the differential equation above as
§(t) +3y(t) +2y(t) =0, or  §+3y+2y=0. (3.2)

The “dots” over the dependent variable denote derivatives with respect to ¢ (time). The number
of dots denote the number of time derivatives. Also, sometimes we will get lazy and write y(t)
as simply y with the understanding that y depends on t.
Again, a “solution” to the differential equation is a function y(¢) which satisfies the equality
n (3.1) for all time, ¢. As we did in Section 2.1, we shall assume that (3.1) has a solution of the
form:
y(t) = ce™, (3.3)

where s is some constant that we have to determine. Note that in our assumed solution (3.3),
we are also including the constant c. As discussed in Section 2.5, this is so that we can capture
an entire family of solutions.

The first two derivatives of (3.3) are:

y(t) = cse™, and ij(t) = cs’e

12



Upon substituting these into (3.1), we get

G(t) +39(t) +2y(t) = cs® e + 3cset +2ce
=c(s2+35+2)e" (3.4)
=0.

Notice that there are three potential ways to satisfy the equality above. We can set ¢ to
zero, set (s 4 35+ 2) to zero, or set e*! to zero. However, recognizing that e is never zero, we
can eliminate the last possibility immediately.

Note also, that if we set the constant ¢ to zero, then the potential solution y(¢) is identically
zero. While y(¢) = 0 is a solution to (3.1), it is a rather boring solution. Mathematicians call it
the “trivial solution.”

Therefore, the only way we can make (3.3) work as a non-trivial solution is to choose an s
which satisfies

s +3s+2=0. (3.5)

We call this the characteristic equation for (3.1). And since the polynomial s? + 3 s + 2 conve-
niently factors into simple terms (s + 1)(s 4 2), we can easily find the characteristic roots:

s=—1, and s = -2

Notice that by choosing s = —1 or s = —2, then the last equality of (3.4) is satisfied for all
time t, regardless of the value of the constant ¢. Thus, upon substitution into (3.3), we see that
we get two families of solutions:

t

yi(t) =cre ", and ya(t) = co e 2.

Here ¢; and co are arbitrary constants. They can be anything.
It turns out that the sum of these two solutions,

y(t) = (1) +y2(t)
2t

3.6
:016_t+026_ , ( )

is also a solution to (3.1). We can verify this easily by substituting (3.6) directly into (3.1):

dt?

- (i/’l(t) + y2<t>) T (3 (1) + 3yz<t>) T (2 yit) + 2yz<t>>

310+ 33(0) +20(0) = 5 (100 +1200) +3 2 (100 +20)) + 2 (10(0) + 1200

< )+ 39t +2y1()>+(y2(t)+3y'z(t)+2yz(t)>
(o )+(0)
0.

The fourth equality above follows from the fact that y;(¢) and y2(t) each satisfy the differential
equation, individually. We think of Equation (3.6) as the general solution. As before, we can
use the constants ¢; and co to satisfy initial conditions. (See Section 3.3.)

13



3.1.1 A Glimpse at a Solution

In the previous section, we found that any linear combination of e~ and e~? is a solution to
the differential equation (3.1). In this section we will look at one specific solution. In (3.6),
we’ll set ¢; = 3 and co = —2 to give

y(t) =3et — 272, (3.7)

y(t)

-1.0

-2.0

time

Figure 3.1: A solution (solid curve) to differential equation (3.1), along with its two parts
(dashed).

A plot of this solution is provided in Figure 3.1 (solid curve). Also shown in the figure
(dashed) are the two functions 3e~* and —2e~2 so that you can see the role that they play. In
particular, we make the following observations:

1. Observe that the two characteristic roots of differential equation (3.1) are both negative:
s = —1 and s = —2. Therefore, the two parts of the solution (c; e~! and ¢z e=2) both
decay to zero.

The sum of two functions that decay to zero is itself a function that decays to zero. So
the general solution y(¢) in (3.6) must decay to zero, regardless of the values of ¢; and cs.
In Figure 3.1, we see that our specific solution decays to zero.

2. Observe that even though the two individual parts of the solution( 3e~! and —2e~%) are
monotonic, the sum of the two parts is not necessarily monotonic. This is clearly evident
in the plot of Figure 3.1 which initially increases before decaying to zero.

This happens because 3e~! decreases toward zero, while the second term —2e~% in-
creases toward zero. And for a brief moment the second term dominates the rate. If we
take a time derivative of y(t) at t = 0 we get

§(0) = (-3e " +4e )| =-3+4=1
t=0

Thus, the slope of the solution is initially positive. Notice the second term dominating
the derivative for small t.

14



3. Finally, observe in Figure 3.1 that for large ¢, the solution approaches zero along the part
3e~t, and not the other part, —2e~2!. Why? I'll let you think about it.

4. As you’re thinking about the question above, you might also want to think about what
would happen if the two characteristic roots were s = 2 and s = 3. What if the roots were
s=-2,5=17

3.2 An Example with Complex Characteristic Roots

OK. Let’s try another example. Consider the following differential equation:
§(t) +4y(t) + 104 y(t) = 0. (3.8)

If we seek a solution of the form () = ce®!, then we get the following characteristic equation
that must be satisfied:

s 445+ 104 = 0. (3.9)
This polynomial is a bit more difficult to factor in one’s head. So, let’s rely on the trusty
quadratic formula, where the roots of a s2 +bs + ¢ = 0 are given by

—b+ Vb% —4dac
2a '

If you have forgotten the quadratic formula, it is time to recommit it to memory. Applying the
formula to our characteristic equation (3.9), we obtain the roots

51, S2 =

s=—-2+101, and s=—-2-—101.

The roots are complex! Here, i = /—1 is the “imaginary” constant.!
Recall that the importance of the characteristic roots is that they tell us the exponents in
the solution. Substituting the roots into our assumed solution y(t) = ce*t, we get the solutions

yi(t) =1 6(72+i10)t, and ya(t) = c2 e(—2-i10)t (3.10)

But what the heck is e(~2+10)t?
Let’s manipulate it a bit:

p(—2+i10)t _ —2t+i10t _ ,—2t ,i10t
Now, you may recall something called Euler’s formula that goes like
e'? = cos(B) + i sin(f).
2

I’'m not going to derive Euler’s formula for you. You can look it up for yourself if you’re curious.
We'll just put it into our complex exponential to find our solutions

yi(t) = ¢ e 720 — ) 72 (cos(10t) + i sin(10t)) = e1 (e_2t cos(10t) +ie % sin(10t))
and
Yo (t) = co 7210 — ¢y 072 (cos(10t) — i sin(10t)) = ez (e * cos(10t) — i e~ * sin(10¢)).

These are a bit clunky, but these are solutions.

LA lot of control books denote the imaginary constant /—1 with the symbol j. I think this is because the
field of control theory was once dominated by electrical engineers who reserved the symbol ¢ for electric current.
I have always used i = v/—1, so I'm going to stick to it.

2The usual derivation uses Taylor series of the exponential, of sine, and of cosine.
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3.2.1 What do we do with complex solutions?

So the general solution of Equation (3.8) is a complex function. While this is true mathemat-
ically, the result might not seem to have any connection to the real, physical world in which
engineers work.

After all, Equation (3.8) is what we get when we derive the equation of motion for the simple
mass-spring system shown in Figure 3.2, where the mass is 1 kg, viscous damping coefficient is
4 kg/s, and spring constant 104 N/m.

c —>
11— y(?)

VWA

Figure 3.2: This simple mass-spring system yield equations of motion similar to (3.8).

In this case, y(t) represents the displacement of the mass. So what does it mean to have a
complex solution?:

y(t) = c1 e [cos(10t) + i sin(10t)] + ¢z e 2! [cos(10t) — i sin(10¢)] . (3.11)

Would it make sense to have a displacement of y = (3 4 2¢) meters? No, of course not.
So let’s think about it more thoroughly. What if we were to collect the real and imaginary
parts of (3.11)? We would end up with the following expression:

y(t) = (c1 + c2) e cos(10t) + i (c1 — o) e 2 sin(10¢). (3.12)

But note that ¢; and ¢y are just constants; they might even be complex constants. Therefore
the c1+c2 in (3.12) is just a constant. We'll call it ¢3. Similarly i (¢; —c2) is a different constant.
We'll call it ¢4. Therefore, we can write our solution (3.12) as

y(t) = c3e ? cos(10t) + cq e 2t sin(10). (3.13)

Therefore, I claim that we can write the general solution to (3.8) by the real functions in (3.13)
rather than the complex functions (3.11). When thinking of the differential equation 3.8 as
representing the physics of a mass-spring-damper system shown in Figure 3.2, this real solution
makes sense.

Verifying the real solution

Just in case you're skeptical (some students are) of the real solution we just derived, let’s verify
that it works. Recall from Chapter 1, we can simply substitute the function into the differential
equation to see if it works.

Actually, we'll just check half the solution here. Define y3(t) as

y3(t) = cge 2 cos(101).
Its first and second derivatives are given by

J3(t) = c3(—2e * cos(10t) — 10e ' sin(10¢)),
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and
§a(t) = c3(4e * cos(10t) + 20 e~ * sin(10¢) + 20 e~ * sin(10¢) — 100 e~ * cos(10t))
= c3(—96 e cos(10t) + 40 e~ sin(10¢)).

In both cases, we used the product rule for taking derivatives. Upon substitution of these into
the left side of the differential equation (3.8), we get

§i3(t) +493(t) + 104 y3(t) = c3(—96 e > cos(10¢) + 40 e * sin(10¢))+
4ez(—2e ? cos(10t) — 10e * sin(10¢))+
104 ¢3 e %t cos(10t)
= c3(0e * cos(10t) + 0 e * sin(10¢))

Therefore, y3(t), all by itself, is a solution. I'll leave it to you to verify that y4(t) = c4 e ' sin(10¢),
all by itself, is also a solution. Putting these two pieces together, we get the general solu-
tion (3.13).

3.2.2 Rules of Thumb for Complex Roots

We just spent two pages describing what happens when you get complex characteristic roots.
Once you understand how it works, you do not need to go through all the steps outlined on the
the previous two pages. Instead, you just need to follow a few simple rules:

1. Complex roots come in conjugate pairs. That is, whenever we get a complex root s = o+iw
as a root to the characteristic equation, then the conjugate s = ¢ —iw is also a root. This
is a result of something called the Complex Conjugate Root Theorem.

2. Solutions corresponding to complex characteristic roots. Whenever we have a pair of
complex characteristic roots of the form s = o + iw, we get solutions of the form

t t

y(t) = cre’ cos(wt) + cae’ sin(wt). (3.14)

Thus the real part, o, of the root appears in the exponential as a growth rate or decay
rate (depending on whether o is positive or negative). The imaginary part, w, of the
characteristic root serves as a frequency of oscillation in the sine and cosine.

Please read this (twice). When you get a differential equation with complex roots, it is
not necessary to go through the steps between Equations (3.10) and (3.12). After finding the
complex characteristic roots, you may jump directly to (3.14) to write the general solution.

3.2.3 A Glimpse at an Oscillatory Solution

Before Section 3.2, all the characteristic roots turned out to be real numbers and all solutions
comprised of simple exponentials that either decayed to zero or blew up to infinity (or negative
infinity) exponentially. Now we see that complex roots of the characteristic polynomial leads
to solutions that have sine and/or cosine multiplied by an exponential. The sine and cosine
produce oscillatory solutions (e.g. oscillations that you might expect from the mass-spring
system of Figure 3.2).
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Rather than simply write a solution symbolically, I think that it is important to be able to
visualize what the function looks like graphically. Let’s consider the function

y(t) = e sin(10). (3.15)

This is Equation (3.13) with ¢3 = 0 and ¢4 = 1, so (3.15) is a solution to (3.8). In Figure 3.3
we show a plot of this solution (solid), along with its constituent parts (dashed).

1.0

05

-1.0

time

Figure 3.3: The solution (3.15) plotted as a solid curve, along with its parts (dashed).

Notice that one of the dashed curves in the figure is sin(10¢); it oscillates between 1.0 and
—1.0 at constant amplitude and period T' = 27/10 = 0.6283. The other dashed curve is e=%,
a decaying exponential that loses 86% of its value every unit of time. Our solution (3.15) is
what we get when we multiply these two functions together. The solution oscillates like the sine
function (with the same frequency) except its amplitude decays exponentially, losing 86% of its
value every unit of time. The solution cycles between e 2! and —e~2!. Some people say e~ 2 is
the “envelope” for the oscillatory solution (3.15).

Graphically, Figure 3.3 reminds us of the roles of the real and imaginary parts of the char-

acteristic roots s = —2 4 ¢10. Because the roots are complex, solutions are oscillatory. The
imaginary part w = 10 is the “circular frequency” of the oscillation. The period is 27 /w. The
real part, 0 = —2, is the exponential decay rate of the envelope of the oscillation.

Before moving on to the next section, you should take a moment to thing what the plot
would look like if the characteristic roots were s = +2 + 10¢? How about s = 0+ 10147

3.3 Satisfying Initial Conditions

As before, the constants c; in our general solutions (3.3, 3.13) to second order differential
equations can be chosen to satisfy specific initial conditions. Here, I deliberately use the plural
“conditions” because one condition (as we had in Chapter 2) is not enough for us now. To
illustrate this, consider Figure 3.4 which shows several solutions to the differential equation (3.1).

Notice that all the solutions shown in the figure satisfy the initial condition y(0) = 1.0, yet
they are distinct solutions. Notice that each of the solutions in the figure has a different slope
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y(t)

L L L L L

time

Figure 3.4: Several solutions to (3.1), each with with the same (partial) initial condition y(0) =
1.0. The slopes (0), however, are all different at time ¢ = 0. The slopes are 4.0, 2.0, 0.0, -2.0,
and -4.0.

at t = 0. Therefore, it might seem reasonable when I tell you that if we specify the derivative
9(0) at the initial time, along with the position y(0), then the two arbitrary constants ¢; and ¢y
in (3.3) can be determined uniquely. We get just one solution to the differential equation when
the initial value and slope are specified.

This makes sense from a simple equation-counting perspective too (I think). Since we have
two arbitrary constants, it is going to take two initial conditions (two equations) to specify the
constants uniquely.

When we have 3'4, 4™ and n'* order linear differential equations, the general solution will
contain 3, 4, and n arbitrary constants, respectively. To specify a solution uniquely, one needs
3, 4, and n initial conditions (or boundary conditions) for these cases.

Before concluding this chapter, I wish to make one more observation regarding Figure 3.4.
All five solutions depicted in the figure solve the differential equation (3.1). Hence, all five
solutions have characteristic roots s = —1 and s = —2. Therefore, one might expect all five
solutions to have the same relative decay rates toward zero.

When we look at the solutions in the figure, though, it appears that four of the solutions have
similar decay rates. However, there is one solution (second from the bottom) which appears to
go to zero faster than the others. Why is this?

It is a fluke of the initial condition. Recall that the general solution to (3.1) is

y(t) =cret +cge
The solution generally has a piece that decays like e~ and another piece that decays a bit faster
like e=2!. The solution second from the bottom in Figure 3.4 has initial conditions y(0) = 1 and
7(0) = —2.0. To match these initial conditions, the coefficients in the general solution must be
c1 = 0.0 and ¢y = 1.0. Thus the e~ is eliminated completely, just leaving the faster decaying
e~2t. This is a rare occurrence. Solutions normally have all pieces.
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3.4 Take-Aways

The take-away concepts and ideas from Chapter 3 are outlined below.

1. Finding solutions to second order, constant coefficient, linear, homogeneous, differential
equations
ajj(t) +by(t) + cy(t) =0,

is similar to finding solutions to the first order equations in Chapter 2: one seeks a solution
of the form y(t) = €. Upon substitution into the differential equation, one obtains a
second degree characteristic polynomial:

as’+bs+c=0,

whose roots are
b+ Vb2 —4ac

2a

S1,82 =

2. If the roots of the characteristic polynomial are real and s; # so, then the general solution
of the differential equation takes the form

y(t) =1 eStt 4 ¢y €520,

As discussed in Section 2.4, the signs of the roots s and so determine whether the solutions
grow or decay, as well as the rate of growth or decay.

3. If the roots of the characteristic polynomial are complex, they come in a conjugate pair:
$1 =0+ 1w, So =0 —1lw.
In this case the general solution of the differential equation, takes the form
y(t) = c1e”" cos(wt) + cz e sin(wt).

The real part of the characteristic root, o determines the rate of exponential growth or
decay. The imaginary part of the characteristic root determines the circular frequency of
the solution.

4. Regardless of whether the roots are real or complex, this type of differential equation
always has two independent solutions, y; () and ya(t) which satisfy the differential equation
individually. The general solution to the differential equation can be written as

y(t) = cryi(t) + cay2(t),
for arbitrary constants ¢; and cso.

5. The arbitrary constants ¢; and cs can be used to satisfy initial conditions or boundary
conditions. For example, if the values of y(0) and (0) are given, then one can determine
values of ¢; and ¢o for the solution by solving the algebraic system of two equations with
two unknowns:

c191(0) + c292(0)
c11(0) + c292(0) =
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Chapter 4

Higher Order, Constant Coefficient,
Linear, Homogeneous Differential
Equations

Now that we're experts at solving first and second order constant coefficient linear differential
equations, solving higher order equations is fairly straightforward.
Let’s discuss it in the context of an example:

d5 4 3 d2 d

Notice that it is a fifth order differential equation'. Nonetheless, we can tackle it in the same
way. When we assume a solution of the form y(t) = ce®, we end up with a characteristic
equation in s that must be solved.

Although it’s probably a good idea to do all the steps in detail a few more times (go ahead
and do it!), there is a pattern that emerges that can save a lot of time. The characteristic
polynomial associated with (4.1) is

s>+ 95 +1675% 480352 + 49165 + 11544 = 0. (4.2)

For constant coefficient linear differential equations, the characteristic polynomial is always a
polynomial whose degree is equal to the order of the differential equation. Furthermore, the
coefficients of the polynomial are always the same as the coefficients to the differential equation.

4.1 Finding Characteristic Roots

Recall from the previous chapter that when we had a second order differential equation, it
produced a quadratic characteristic equation similar to as® + bs + ¢ = 0. In that case, we were
able to easily find the roots according to the formula

—b+ Vb% —4ac

- (4.3)

51, S2 =

IThe choice of coefficients may seem a bit odd to you. However, they were selected for a specific purpose.
You'll see later in the chapter.
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Unfortunately, there is no simple formula for finding the roots of polynomial equations of
degree 3 and higher. The best way to obtain the roots to higher order polynomials is to use a
computer algorithm?.

4.1.1 Polynomial Root Finding with Matlab

Throughout this semester, we will use Matlab extensively. As you probably know, Matlab is a
powerful numerical analysis tool used throughout engineering and scientific practice. It is used
heavily in control engineering too. Among many other things, Matlab is able to calculate our
roots in a small fraction of a second.

It’s easy to do. After firing up Matlab, type the following command at the prompt:

>> p = [1,9,167,803,4916,11544]

This is how we represent the polynomial on the left hand side of (4.2) within Matlab. This is
also how one writes a 1 x 6 matrix in Matlab. Depending on the context in which it is used,
Matlab knows how to interpret it.

Now, you just need to type

>> roots(p)

If everything worked correctly, Matlab should spit out the five roots: s = —2+i10, s = —1£46,
and s = —3.

We get five roots because (4.2) has a fifth order polynomial. Also, since all coefficients of
the polynomial are real, we expected that any complex roots would come in conjugate pairs.

4.2 Constructing the General Solution

From the characteristic roots, it is a rather simple matter construct the general solution. The
rule states that for each real root s = o of the characteristic polynomial, there is a solution to
the original differential equation of the form y(t) = e°t. For each complex conjugate pair of
roots s = o £ iw, there are two solutions of the form y(t) = e’ cos(wt) and y(t) = e’ sin(wt).
Each of these solutions make up part of the general solution.

Returning back to our example in Equation (4.1), we find that general solution is

y(t) =cre 3 + cpetcos(6t) + cze tsin(6t) 4+ cqe 2 cos(10t) 4 5 e 2t sin(10¢). (4.4)

Note that the general solution above has five (independent) components, with five arbitrary
constants c;. We get five components because there were five roots to the characteristic poly-
nomial. In turn, the characteristic polynomial had five roots because the original differential
equation was of fifth order.

In general, an n'* order, linear, homogeneous differential equation has a general solution
with n independent components.

2Most computational algorithms find roots via a smart iterative trial and error process. If you’ve taken
MEE 380/381, you should know all about this.
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4.3 What about repeated roots?

Given the result described above, let’s tackle another differential equation:

A2 L+ 46Dy + 192 L) + 200401 = 0 (4.5)
att? at3” a2” dt? == '
In this case, the characteristic polynomial is

s+ 253 + 4652 +1925 4 200 = 0, (4.6)

which can be written as
(s =25+ 50) (s +2)% = 0.

Therefore, we have characteristic roots at s = 1 & 714 as well as repeated roots at s = —2, —2.
Now, we might be tempted to write the general solution to (4.5) as
y(t) = cre’ cos(Tt) +cael sin(Tt) +cze 4 cype 2
But this clearly is not correct. The last two terms can be combined into one term: cze™2 +
cye ' — c5 et This does not have four independent terms as required since (4.5) is a fourth
order differential equation. We’re missing a term.
It turns out that the missing term looks like ¢ e~2!, and the correct general solution is

y(t) = c1 e’ cos(7t) + cael sin(Tt) + c3 e 2 feyte (4.7)

Now you might wonder where that new term came from. And if you are wondering, I urge
you to go look it up in a real textbook. For purposes of this course, I'd argue that we really don’t
care about the case of repeated roots. Watch what happens if we change one of the coefficients
n (4.5) from 192 to 192.01. In this case, the characteristic roots become s = 1.0001 £ 7.0001 1,
s = —1.9815, and s = —2.0186. I could change any of the coefficients of (4.5) and the roots
would no longer be repeated. In this sense, having repeated roots is rare. If we were to pick a
constant coefficient linear differential equations at random, the probability of picking one with
repeated roots would be zero.

There is one exception. Later, we’ll find that is somewhat common to have repeated roots
at s = 0. We'll tackle these later.

4.4 Take-Aways
The take-away concepts and ideas from Chapter 4 are outlined below.

1. One can extend ideas for solving first and second order differential equations in Chap-
ters 2 and 3 to solving higher order constant coefficient, linear, homogeneous differential
equations of the form:

m dn—l

d

In secking a solution of the form y(t) = e%t, we get a characteristic equation of the form.

anS" +an_18" ' +...+ars+ag=0 (4.9)
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. The general solution to the differential equation (4.8) contains n independent components
and can be written as

y(t) =cryi(t) + caya(t) + cays(t) + ... + cryn(t).
The n components are determined by the n roots of the characteristic polynomial (4.9).

. When the degree of the characteristic polynomial (4.9) is bigger than two (n > 2), the
most practical way to find characteristic roots is usually to use some computer program.
Section 4.1.1 shows you how to do it with Matlab.

. For each real characteristic root s = o, the general solution has a component of the form
y(t) =e
. For each complex conjugate pair of characteristic roots s = o; +iwj;, s = 0; — iwj, the

general solution has components of the form

yi(t) = e cos(wjt)  yja(t) = " sin(w;t).
. If some of the characteristic roots are repeated, the corresponding solution components
take a somewhat different form. However we will not be concerned with these since they

are unlikely to occur in normal circumstances.

. For an n'" order differential equation, one needs n initial conditions to uniquely determine
the constants ¢; through c,.
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