Suppose we have a large tank of water. Perhaps it is the tank on top of a tall water tower. The tank has an inlet through which water flows into the tank at a rate $Q_{i n}$. Here, $Q_{i n}$ is measured in units of liters per second. Similarly, the tank has an outlet through which water flows out of the tank at rate $Q_{\text {out }}$, also measured in units of liters per second.

Both $Q_{\text {in }}$ and $Q_{\text {out }}$ change with respect to time. We define

$$
\begin{equation*}
Q(t)=Q_{\text {in }}(t)-Q_{\text {out }}(t), \tag{1}
\end{equation*}
$$

as the net flow of water into the tank. In the figure below, we show a plot of $Q$ with respect to time. Given this, your job is to sketch a plot of the total volume $V$ of water in the tank as a function of time. At time $t=0$, the initial Volume of water is at the small dot on the $V$ axis. Assume both plots have the same time scale. I have provided vertical dashed lines to align your plot of $V$ vs. $t$ with my plot of $Q$ vs. $t$.


Now, let's do the reverse operation. Suppose you are given the volume of water $V$ as a function of time as shown in the top plot. Given this, generate the plot of the net flow rate, $Q$, as a function of time.


Page 2

